AI

Hearing is like seeing for our brains and for machines

Comment

Nils Lenke

Contributor

Nils Lenke is the senior director of corporate research at Nuance Communications.

There is an array of neural net machine learning approaches that are simply more than just “deep.” In a time when neural networks are increasingly popular for advancing voice technologies and AI, it’s interesting that many of the current approaches were originally developed for image or video processing.

One of those methods, convolutional neural networks (CNNs), makes it easy to see why image-processing neural nets are strikingly similar to the way our brains process audio stimuli. CNNs, therefore, nicely illuminate that our audio and visual processes are connected in more ways than one.

What you need to know about CNNs

As human beings, we recognize a face or an object regardless of where in our visual field (or in a picture) it appears. When you try to model that capability in a machine, by teaching it how to search for visual features (like edges or curves at a lower level of a neural network or eyes and ears at a higher level, in the example of face recognition), you typically do so locally, as all relevant pixels are close to each other. In human visual perception, this is reflected by the fact that a cluster of neurons is focused on a small receptive field, which is part of the much larger entire visual field.

Because you don’t know where the relevant features will appear, you have to scan the entire visual field, either sequentially, sliding your small receptive field as a window over it (top to bottom and left to right) or have multiple smaller receptive fields (clusters of neurons) that each focus on (overlapping) small parts of the input.

The latter is what CNNs do. Together, these receptive fields cover the entire input and are called “convolutions.” Higher levels of the CNNs then condense the information coming from the individual lower-level convolutions and abstract away from the specific location, as shown below.

image001
Source: Wikipedia

So, if you search for faces or objects in your photos using Google Photos, or the equivalent new feature in Apple’s iOS 10, you can assume that CNNs are at use for identifying the relevant candidate locations in pictures where the requested face or object might be shown.

image002
Source: Region-based Convolutional Networks for Accurate Object Detection and Segmentation by Ross Girshick, Jeff Donahue, Trevor Darrell and Jitendra Malik

But we have also found several applications of CNNs to speech and language.

CNNs can be applied to a raw speech signal in an end-to-end way (i.e. without manual definition of features). The CNNs look at the speech signal by unfolding an input field with time as one dimension and the energy distribution over the various frequencies as the second dimension into their “convolutions,” thereby learning automatically which frequency bands are most relevant for speech. The higher layers of the network are then used for the core task of speech recognition: finding phonemes and words in the speech signal.

Once you have those words, the next example is “intent classification” in natural language understanding (NLU), or understanding from a user request what type of task the user wants to achieve (I covered in a recent blog post how the other aspect of NLU, named entity recognition, works). For example, in the command “Transfer money from my checking account to John Smith,” the intent would be “money_transfer.” The intent is typically signaled by a word or a group of words (usually local to each other), which can appear anywhere in the query.

So, in analogy to image recognition we need to search for a local feature by sliding a window over a temporal phenomenon (the utterance; looking at one word and its context at a time) rather than a spatial field. And this works very well: When we introduced CNNs for this task, they performed more than 10 percent more accurately than the previous technology.

Neighbors in the brain — and in the field

Why are CNNs successful at these tasks? A rather straightforward explanation could be that they just share characteristics with image processing; they are all of the “find something small in something bigger, and we don’t know where it might be” type. But there may be another slightly more interesting explanation, namely the fact that CNNs designed for visual tasks also work for speech-related tasks, which is a reflection of the fact that the brain uses very similar methods to process both visual and audio/speech stimuli.

Consider phenomena like synesthesia, or the “stimulation of one sensory or cognitive pathway lead[ing] to automatic, involuntary experiences in a second sensory or cognitive pathway.” For example, audio or speech stimuli can lead to a visual reaction. (I employ a mild version of this; for me, each day of the week, or rather the word describing the day, has a distinct color. Monday is dark red, Tuesday grey, Wednesday a darker grey and Thursday a lighter red and so on.) It is being interpreted as an indication that processing of audio and speech signals and optical processing have to be so-called “neighbors” in the brain somehow.

Similarly, it has been shown that brain areas designed for the processing of audio signals and speech can be used for visual tasks, such as people born with hearing impairments who can re-purpose the audio/speech area of their brains to process sign language. This probably means that the organization of brain cells (neurons) processing visual or audio signals must be very similar.

So, back to the practical applications of all of this. It is not too difficult to imagine yourself a couple of years from now sitting in a self-driving car and chatting with an automated assistant asking it to play your favorite music or to book a table at a restaurant. There will likely be several CNNs active “behind the scenes” to make this work:

  • One or several will be used by the LIDAR system (“Light detection and ranging,” a kind of radar based on lasers) used by the car to create a model of its surroundings, including obstacles and other cars.
  • Likely the car will also use cameras to detect and interpret traffic signs; chances are good that CNNs will be used for that, as well.
  • The automated assistant will use CNNs, both in its speech recognition and its natural language understanding components, to find phonemes and words in the speech signal and to find concepts in the stream of words, respectively.

And there will probably be others. Of course, all these tasks are performed by different CNNs, probably even in different control units. And each of the CNNs can only perform exactly the task for which it was trained, and none of the others (it would have to be retrained for that).

However — and here it gets fascinating again — it has been shown that when CNNs are trained, they seem to acquire (especially on the lower layers) somewhat generic features (or concepts you could say) that carry over to other tasks. It is easy to see why this works for related domains; for example, in speech recognition you can take a CNN trained on one language (say English) and only re-train the top layers on another language (say German) and it will work well on that new language. Obviously the lower layers capture something that is common between multiple languages.

However — and I find it more surprising — it also has been tried to train CNNs across modalities, such as images of a scene and textual representations of that scene. The resulting networks can then be used to retrieve images based on text and vice versa. The authors conclude that at some level the CNNs learn features common to the modalities — without being told how to do so. Again, an interesting result demonstrating that seeing and dealing with language (text) must have a lot in common.

There also is another very practical ramification of the similarity of visual and audio/speech and language processing. We have found that graphical processing units (GPUs), which were developed for computer graphics (visual channel), can be employed to speed up machine learning tasks for speech and language, too. The reason is that the tasks that need to be handled again are similar in nature: applying relatively simple mathematical operations to lots of data points in parallel. So you could say the new developments in computer gaming helped to make the training of deep neural nets feasible.

Neural net research and innovation has broad implications, and, as we have seen, progress in one application area (like image recognition) also helps advance things in other areas (like speech recognition and NLU). As we have also seen, this may be caused by the many parallels between audio and visual receptors in the human brain, or in general how the brain is organized.

As a result, we will continue to see fast progress of machine learning and AI in many fields, all benefiting from research efforts in many areas whose results can be shared. More specifically, it is no longer a surprise that CNNs, originally designed for vision, will ultimately help machines to listen and better understand us — something that’s crucial as we are continually propelled forward into this new era of human-machine interaction.

More TechCrunch

The prospects for troubled banking-as-a-service startup Synapse have gone from bad to worse this week after a United States Trustee filed an emergency motion on Wednesday.  The trustee is asking…

A US Trustee wants troubled fintech Synapse to be liquidated via Chapter 7 bankruptcy, cites ‘gross mismanagement’

U.K.-based Seraphim Space is spinning up its 13th accelerator program, with nine participating companies working on a range of tech from propulsion to in-space manufacturing and space situational awareness. The…

Seraphim’s latest space accelerator welcomes nine companies

OpenAI has reached a deal with Reddit to use the social news site’s data for training AI models. In a blog post on OpenAI’s press relations site, the company said…

OpenAI inks deal to train AI on Reddit data

X users will now be able to discover posts from new Communities that are trending directly from an Explore tab within the section.

X pushes more users to Communities

For Mark Zuckerberg’s 40th birthday, his wife got him a photoshoot. Zuckerberg gives the camera a sly smile as he sits amid a carefully crafted re-creation of his childhood bedroom.…

Mark Zuckerberg’s makeover: Midlife crisis or carefully crafted rebrand?

Strava announced a slew of features, including AI to weed out leaderboard cheats, a new ‘family’ subscription plan, dark mode and more.

Strava taps AI to weed out leaderboard cheats, unveils ‘family’ plan, dark mode and more

We all fall down sometimes. Astronauts are no exception. You need to be in peak physical condition for space travel, but bulky space suits and lower gravity levels can be…

Astronauts fall over. Robotic limbs can help them back up.

Microsoft will launch its custom Cobalt 100 chips to customers as a public preview at its Build conference next week, TechCrunch has learned. In an analyst briefing ahead of Build,…

Microsoft’s custom Cobalt chips will come to Azure next week

What a wild week for transportation news! It was a smorgasbord of news that seemed to touch every sector and theme in transportation.

Tesla keeps cutting jobs and the feds probe Waymo

Sony Music Group has sent letters to more than 700 tech companies and music streaming services to warn them not to use its music to train AI without explicit permission.…

Sony Music warns tech companies over ‘unauthorized’ use of its content to train AI

Winston Chi, Butter’s founder and CEO, told TechCrunch that “most parties, including our investors and us, are making money” from the exit.

GrubMarket buys Butter to give its food distribution tech an AI boost

The investor lawsuit is related to Bolt securing a $30 million personal loan to Ryan Breslow, which was later defaulted on.

Bolt founder Ryan Breslow wants to settle an investor lawsuit by returning $37 million worth of shares

Meta, the parent company of Facebook, launched an enterprise version of the prominent social network in 2015. It always seemed like a stretch for a company built on a consumer…

With the end of Workplace, it’s fair to wonder if Meta was ever serious about the enterprise

X, formerly Twitter, turned TweetDeck into X Pro and pushed it behind a paywall. But there is a new column-based social media tool in town, and it’s from Instagram Threads.…

Meta Threads is testing pinned columns on the web, similar to the old TweetDeck

As part of 2024’s Accessibility Awareness Day, Google is showing off some updates to Android that should be useful to folks with mobility or vision impairments. Project Gameface allows gamers…

Google expands hands-free and eyes-free interfaces on Android

A hacker listed the data allegedly breached from Samco on a known cybercrime forum.

Hacker claims theft of India’s Samco account data

A top European privacy watchdog is investigating following the recent breaches of Dell customers’ personal information, TechCrunch has learned.  Ireland’s Data Protection Commission (DPC) deputy commissioner Graham Doyle confirmed to…

Ireland privacy watchdog confirms Dell data breach investigation

Ampere and Qualcomm aren’t the most obvious of partners. Both, after all, offer Arm-based chips for running data center servers (though Qualcomm’s largest market remains mobile). But as the two…

Ampere teams up with Qualcomm to launch an Arm-based AI server

At Google’s I/O developer conference, the company made its case to developers — and to some extent, consumers — why its bets on AI are ahead of rivals. At the…

Google I/O was an AI evolution, not a revolution

TechCrunch Disrupt has always been the ultimate convergence point for all things startup and tech. In the bustling world of innovation, it serves as the “big top” tent, where entrepreneurs,…

Meet the Magnificent Six: A tour of the stages at Disrupt 2024

There’s apparently a lot of demand for an on-demand handyperson. Khosla Ventures and Pear VC have just tripled down on their investment in Honey Homes, which offers up a dedicated…

Khosla Ventures, Pear VC triple down on Honey Homes, a smart way to hire a handyman

TikTok is testing the ability for users to upload 60-minute videos, the company confirmed to TechCrunch on Thursday. The feature is available to a limited group of users in select…

TikTok tests 60-minute video uploads as it continues to take on YouTube

Flock Safety is a multibillion-dollar startup that’s got eyes everywhere. As of Wednesday, with the company’s new Solar Condor cameras, those eyes are solar-powered and use wireless 5G networks to…

Flock Safety’s solar-powered cameras could make surveillance more widespread

Since he was very young, Bar Mor knew that he would inevitably do something with real estate. His family was involved in all types of real estate projects, from ground-up…

Agora raises $34M Series B to keep building the Carta for real estate

Poshmark, the social commerce site that lets people buy and sell new and used items to each other, launched a paid marketing tool on Thursday, giving sellers the ability to…

Poshmark’s ‘Promoted Closet’ tool lets sellers boost all their listings at once

Google is launching a Gemini add-on for educational institutes through Google Workspace.

Google adds Gemini to its Education suite

More money for the generative AI boom: Y Combinator-backed developer infrastructure startup Recall.ai announced Thursday it has raised a $10 million Series A funding round, bringing its total raised to over…

YC-backed Recall.ai gets $10M Series A to help companies use virtual meeting data

Engineers Adam Keating and Jeremy Andrews were tired of using spreadsheets and screenshots to collab with teammates — so they launched a startup, CoLab, to build a better way. The…

CoLab’s collaborative tools for engineers line up $21M in new funding

Reddit announced on Wednesday that it is reintroducing its awards system after shutting down the program last year. The company said that most of the mechanisms related to awards will…

Reddit reintroduces its awards system

Sigma Computing, a startup building a range of data analytics and business intelligence tools, has raised $200 million in a fresh VC round.

Sigma is building a suite of collaborative data analytics tools