AI

Why the future of deep learning depends on finding good data

Comment

Image Credits:

Ophir Tanz

Contributor

Ophir Tanz is the CEO of GumGum, an artificial intelligence company with particular expertise in computer vision. GumGum applies its capabilities to a variety of industries, from advertising to professional sports across the globe. Ophir holds a B.S. and a M.S. from Carnegie Mellon University and currently lives in Los Angeles.

More posts from Ophir Tanz

We’ve already taken a look at neural networks and deep learning techniques in a previous post, so now it’s time to address another major component of deep learning: data — meaning the images, videos, emails, driving patterns, phrases, objects and so on that are used to train neural networks.

Surprisingly, despite our world being quite literally deluged by data — currently about 2.5 quintillion bytes a day, for those keeping tabs — a good chunk of it is not labeled or structured, meaning that for most current forms of supervised learning, it’s unusable. And deep learning in particular depends on a steady supply of the good, structured and labeled stuff.

In the second part of our “A Mathless Guide to Neural Networks,” we’ll take a look at why high-quality, labeled data is so important, where it comes from, how it’s used and what solutions our eager-to-learn machines can expect in the near-term future.

Supervised learning: I wanna hold your hand

In our post about neural networks, we explained how data is fed to machines through an elaborate sausage press that dissects, analyzes and even refines itself on the fly. This process is considered supervised learning in that the giant piles of data fed to the machines have been painstakingly labeled in advance. For example, to train a neural network to identify pictures of apples or oranges, it needs to be fed images that are labeled as such. The idea is that machines can be groomed to understand data by finding what all pictures labeled apple or orange, respectively, have in common, so they can eventually use those recognized patterns to more accurately predict what they are seeing in new images. The more labeled pictures they see, the bigger (and more diverse) the data set, the better they can refine the accuracy of their predictions; practice makes (almost) perfect.

This approach is useful in teaching machines about visual data, and how to identify anything from photographs and video to graphics and handwriting. The obvious upside is that it is now relatively commonplace for machines to be equal or even better than humans at say, image recognition for a number of applications. For instance, Facebook’s Deep Learning software is able to match two images of an unfamiliar person at the same level of accuracy as a human  (better than 97 percent of the time), and Google, earlier this year, unveiled a neural network that can spot cancerous tumors in medical images more accurately than pathologists.

Unsupervised learning: Go west, young man

The companion to supervised learning, as you might guess, is called unsupervised learning. The idea is that you loosen the leash on your machine and let it dive into the data to discover and experience it on its own, look for patterns and connections and come to conclusions, without requiring the guidance of a chaperone.

This technique had long been frowned upon by a certain segment of artificial intelligence scientists, but, in 2012, Google demonstrated a deep learning network that was able to decipher cats, faces and other objects from a giant pile of unlabeled images. This technique is impressive and produces some extremely interesting and useful results, but, so far, unsupervised learning doesn’t match the accuracy and effectiveness of supervised training for many purposes — more on that in a bit.

Data, data, everywhere

It is in the chasm between these two techniques that we run into the larger issues that are proving to be confounding. It’s useful to liken these machines to human babies. We know that by simply setting our baby loose, without guidance, it’ll learn, but not necessarily what we want it to learn, nor in any predictable way. But since we also teach our baby by instructing it, then we need to expose it to large numbers of objects and concepts in an essentially infinite number of topics.

We need to teach our baby about directions, animals and plants, gravity and other physical properties, reading and language, food types and the elements, you know — the very stuff of existence. All of this can more or less be explained over time with a mix of show-and-tell and answering the endless questions that any curious young human asks.

It’s a tremendous undertaking, but one that most parents, as well as other people around the average child, take on each and every day on the fly. A neural network has the same needs, but its focus is usually more narrow and we don’t really socialize with it, so the labels need to be much more precise.

Currently there are a number of ways that AI researchers and scientists can get access to data to train their machines. The first way is to go out there and amass a giant stockpile of labeled data on their own. This happens to be the case for companies like Google, Amazon, Baidu, Apple, Microsoft and Facebook, all of which have businesses that, funnily enough,  generate breathtaking amounts of data — much of it laboriously curated for free by customers.

It would be folly to try to list them all here, but think of the billions of labeled and tagged images uploaded to the cloud storage of all these companies’ databases. Then think about all the documents, the search queries — by voice, and text, and photos and optical character recognition— the location data and mapping, the ratings and likes and shares, the purchases, the delivery addresses, the phone numbers and contact info and address books and the social connections.

Legacy companies — and any company of huge scale — tend to have a unique advantage in machine learning in that they have copious amounts of specific types of data (which may or may not be valuable in the end, but often are).

Data the hard way

If you don’t happen to own a Fortune 100 company with collections of trillions of data points, then you’d better be good at sharing (or have deep pockets). Access to lots of extremely varied data is a key part of AI research. Fortunately, there already is a large number of free and publicly shared labeled data sets that cover a mind-boggling array of categories (this Wikipedia page hosts links to dozens and dozens).

Depending on your fancy, there are data sets showing everything from human facial expressions and sign language to the faces of public figures and skin pigmentation. You can find millions of images of crowds, forests and pets — all kinds of pets — or sift through boatloads of user and customer reviews. There also are data sets consisting of spam emails, tweets in multiple languages, blog posts and legal case reports.

New kinds of data are emerging from the myriad increasingly ubiquitous sensors in the world, such as medical sensors, motion sensors, smart device gyroscopes, heat sensors and more. And then there are all those pictures people take of their food, wine labels and ironic signage. In other words, there’s no shortage whatsoever of data in its purest form.

So what’s the problem?!?

Despite this apparent cornucopia of data, in practice, it turns out that many of these collections aren’t so broadly useful. Either they are too small of a collection, they are poorly or partially labeled or they just don’t meet your needs. For instance, if you’re hoping to teach a machine to recognize a Starbucks logo in images, you may only be able to find a training database of images that have been variously labeled “beverages” or “drinks” or “coffee” or “container” or “Joe.” Without the right labels, they just aren’t useful. And the average law firm or established corporation may have millions of millions of contracts or other paperwork in its databases, but that data isn’t usable as it’s likely in a simple unlabeled PDF format.

Another challenge in terms of optimal data is making sure that the training sets used are both large and diverse. Why? Let’s explore the idea of training data with a simple thought experiment. Imagine we give a little kid, we’ll call him Ned, the task of recognizing Spanish words on flashcards. When shown a flashcard, all Ned needs to do is say “Yes, this is Spanish” or “No, this is not Spanish.”

Having never seen nor spoken Spanish before, this kid Ned is given 10 random flashcards in order to learn what Spanish words do and do not look like. Five of the cards have the Spanish words: niño, rojo, comer, uno and enfermos, and the other five cards have words from other languages: cat, 猫, céu, yötaivas and नभ. Ned is told he can have a huge bowl of ice cream if he can pick out each of the Spanish words from a new set of flashcards. After an hour of studying, it’s time to test.

On the first test Ned is shown a Spanish word: azul. Because the character “a” only shows up in the non-Spanish pile, azul is not a Spanish word as far as Ned is concerned. The second card has the Portuguese word for mother: mãe. Ned immediately shouts, “Spanish!” Again, wrong answer, but his training cards include only one card with a tilde, and it happens to be in the Spanish pile. A third card has volcano on it. The boy notices that the word ends with an “o” and, remembering his training cards, he confidently says, “Spanish.” A fourth card showing “منزل” doesn’t look like anything from either pile and we can see tears building as the boy watches his ice cream melt. Is this a problem with his reasoning skills or his training data?

One issue: data set size. The boy has spent all his energy memorizing just 10 cards. In training a complex model, such as a deep neural network, the use of small data sets can lead to something called overfitting, which is a common pitfall in machine learning.

Essentially, overfitting is a consequence of having a large number of learnable parameters relative to training samples — parameters being those “neurons” that we were exhaustively adjusting via backpropagation in our previous article. The result can be a model that has memorized this training data as opposed to learning general concepts from the data.

Think of our apple-orange network. With a small amount of apple images as our training data and a large neural network, we risk causing the network to hone in on the specific details — the color red, brown stems a round shape — needed to accurately differentiate between just the training data. Those fine-grained details may do very well to describe the training apple pictures specifically, but prove to be inconsequential, or even incorrect, when trying to recognize new, unseen apples at test time.

Another issue, and an important principle, is data diversity. Ned would have been a lot better off if he had seen a non-Spanish word ending in “o” or a wider range of Spanish accent marks. Statistically speaking, the more unique data you accrue, the higher the probability that said data will span a more diverse range of features. In the case of the apple-orange network, we want it to generalize enough so that it recognizes all images of apples and oranges, regardless of whether they were present in the training set. Not all apples are red, after all, and if we train our network only on images of red apples (even if we have loads of them), we run the risk of the network not recognizing green apples at test time. Thus, if the types of data used during training are biased and not representative of data we expect at test time, expect trouble.

The issue of bias is beginning to crop up in a lot of AI. Neural networks and the data sets used to train them reflect any biases of the people or groups of people who put them together. Again, by only training our apple-orange network with images of red apples, we risk the network learning the bias that apples can only be red. What about green apples, yellow apples and candy apples? If you extrapolate to other applications, such as facial recognition, the impact that data bias can have becomes glaringly obvious. As the old saying goes: garbage in, garbage out.

Building a mousetrap that thinks for itself

Short of hiring people to label data — which is a thing, by the way, and it’s pricey — or all of the companies of the world suddenly agreeing to open up all their proprietary data and distribute it happily to scientists across the globe (we’d advise against holding your breath), then the answer to the shortage of good training data is not having to rely on it at all. That’s right, rather than working toward the goal of getting as much training data as possible, the future of deep learning may be to work toward unsupervised learning techniques. If we think about teaching babies and infants about the world, this makes sense; after all, while we do teach our children plenty, much of the most important learning we do as humans is experiential, ad hoc — unsupervised.

More TechCrunch

Welcome to Startups Weekly — Haje‘s weekly recap of everything you can’t miss from the world of startups. Sign up here to get it in your inbox every Friday. Well,…

Startups Weekly: Drama at Techstars. Drama in AI. Drama everywhere.

Last year’s investor dreams of a strong 2024 IPO pipeline have faded, if not fully disappeared, as we approach the halfway point of the year. 2024 delivered four venture-backed tech…

From Plaid to Figma, here are the startups that are likely — or definitely — not having IPOs this year

Federal safety regulators have discovered nine more incidents that raise questions about the safety of Waymo’s self-driving vehicles operating in Phoenix and San Francisco.  The National Highway Traffic Safety Administration…

Feds add nine more incidents to Waymo robotaxi investigation

Terra One’s pitch deck has a few wins, but also a few misses. Here’s how to fix that.

Pitch Deck Teardown: Terra One’s $7.5M Seed deck

Chinasa T. Okolo researches AI policy and governance in the Global South.

Women in AI: Chinasa T. Okolo researches AI’s impact on the Global South

TechCrunch Disrupt takes place on October 28–30 in San Francisco. While the event is a few months away, the deadline to secure your early-bird tickets and save up to $800…

Disrupt 2024 early-bird tickets fly away next Friday

Another week, and another round of crazy cash injections and valuations emerged from the AI realm. DeepL, an AI language translation startup, raised $300 million on a $2 billion valuation;…

Big tech companies are plowing money into AI startups, which could help them dodge antitrust concerns

If raised, this new fund, the firm’s third, would be its largest to date.

Harlem Capital is raising a $150 million fund

About half a million patients have been notified so far, but the number of affected individuals is likely far higher.

US pharma giant Cencora says Americans’ health information stolen in data breach

Attention, tech enthusiasts and startup supporters! The final countdown is here: Today is the last day to cast your vote for the TechCrunch Disrupt 2024 Audience Choice program. Voting closes…

Last day to vote for TC Disrupt 2024 Audience Choice program

Featured Article

Signal’s Meredith Whittaker on the Telegram security clash and the ‘edge lords’ at OpenAI 

Among other things, Whittaker is concerned about the concentration of power in the five main social media platforms.

12 hours ago
Signal’s Meredith Whittaker on the Telegram security clash and the ‘edge lords’ at OpenAI 

Lucid Motors is laying off about 400 employees, or roughly 6% of its workforce, as part of a restructuring ahead of the launch of its first electric SUV later this…

Lucid Motors slashes 400 jobs ahead of crucial SUV launch

Google is investing nearly $350 million in Flipkart, becoming the latest high-profile name to back the Walmart-owned Indian e-commerce startup. The Android-maker will also provide Flipkart with cloud offerings as…

Google invests $350 million in Indian e-commerce giant Flipkart

A Jio Financial unit plans to purchase customer premises equipment and telecom gear worth $4.32 billion from Reliance Retail.

Jio Financial unit to buy $4.32B of telecom gear from Reliance Retail

Foursquare, the location-focused outfit that in 2020 merged with Factual, another location-focused outfit, is joining the parade of companies to make cuts to one of its biggest cost centers –…

Foursquare just laid off 105 employees

“Running with scissors is a cardio exercise that can increase your heart rate and require concentration and focus,” says Google’s new AI search feature. “Some say it can also improve…

Using memes, social media users have become red teams for half-baked AI features

The European Space Agency selected two companies on Wednesday to advance designs of a cargo spacecraft that could establish the continent’s first sovereign access to space.  The two awardees, major…

ESA prepares for the post-ISS era, selects The Exploration Company, Thales Alenia to develop cargo spacecraft

Expressable is a platform that offers one-on-one virtual sessions with speech language pathologists.

Expressable brings speech therapy into the home

The French Secretary of State for the Digital Economy as of this year, Marina Ferrari, revealed this year’s laureates during VivaTech week in Paris. According to its promoters, this fifth…

The biggest French startups in 2024 according to the French government

Spotify is notifying customers who purchased its Car Thing product that the devices will stop working after December 9, 2024. The company discontinued the device back in July 2022, but…

Spotify to shut off Car Thing for good, leading users to demand refunds

Elon Musk’s X is preparing to make “likes” private on the social network, in a change that could potentially confuse users over the difference between something they’ve favorited and something…

X should bring back stars, not hide ‘likes’

The FCC has proposed a $6 million fine for the scammer who used voice-cloning tech to impersonate President Biden in a series of illegal robocalls during a New Hampshire primary…

$6M fine for robocaller who used AI to clone Biden’s voice

Welcome back to TechCrunch Mobility — your central hub for news and insights on the future of transportation. Sign up here for free — just click TechCrunch Mobility! Is it…

Tesla lobbies for Elon and Kia taps into the GenAI hype

Crowdaa is an app that allows non-developers to easily create and release apps on the mobile store. 

App developer Crowdaa raises €1.2M and plans a US expansion

Back in 2019, Canva, the wildly successful design tool, introduced what the company was calling an enterprise product, but in reality it was more geared toward teams than fulfilling true…

Canva launches a proper enterprise product — and they mean it this time

TechCrunch Disrupt 2024 isn’t just an event for innovation; it’s a platform where your voice matters. With the Disrupt 2024 Audience Choice Program, you have the power to shape the…

2 days left to vote for Disrupt Audience Choice

The United States Department of Justice and 30 state attorneys general filed a lawsuit against Live Nation Entertainment, the parent company of Ticketmaster, for alleged monopolistic practices. Live Nation and…

Ticketmaster antitrust lawsuit could give new hope to ticketing startups

The U.K. will shortly get its own rulebook for Big Tech, after peers in the House of Lords agreed Thursday afternoon to pass the Digital Markets, Competition and Consumer bill…

‘Pro-competition’ rules for Big Tech make it through UK’s pre-election wash-up

Spotify’s addition of its AI DJ feature, which introduces personalized song selections to users, was the company’s first step into an AI future. Now, Spotify is developing an alternative version…

Spotify experiments with an AI DJ that speaks Spanish

Call Arc can help answer immediate and small questions, according to the company. 

Arc Search’s new Call Arc feature lets you ask questions by ‘making a phone call’